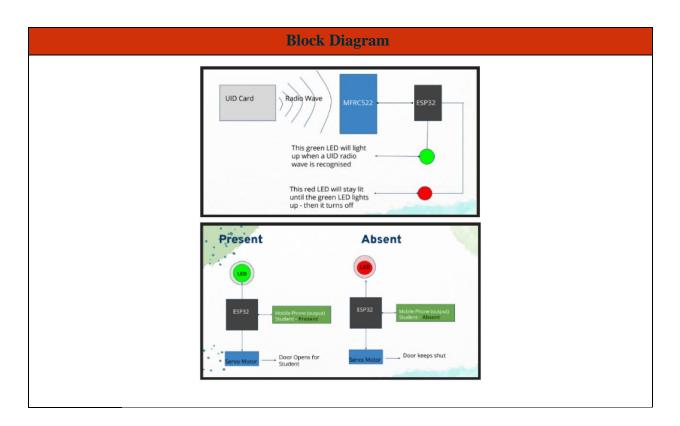


Automatic Attendance Tracker

Project Overview

This Arduino-based project will be focused on making an attendance checking system to efficiently take attendance in a SMART classroom.


Course Connections	21st Century Skills	CTE Alignment
Middle School Science High School Physics High School Engineering	Communication, Critical Thinking, Collaboration	Energy, Environment, and Development Pathway

Objective

Students will make an attendance checking system to efficiently take attendance in a SMART classroom.

Materials

- 1. ESP32 Microcontroller
- 2. MFRC522 Module
- 3. UID Card
- 4. 2 LED's, 1 green and 1 red
- 5. Servo Motor
- 6. Breadboard
- 7. Wires (Male to female)
- 8. USB Cable
- 9. Computer

Application

Traditional attendance can be time-consuming, with teachers roll calling or using a seating chart to ensure students are present. This process is known to shift the focus and learning in the classroom. An automatic attendance checker is not time-demanding and allows teachers to focus on instruction. The automatic attendance checker allows for a smooth learning process and greater security in the classroom. This system could also be used for restroom breaks. When a student leaves the classroom and how long it took for the restroom break.

Outline/Schedule

Part 1: Introduction to Automatic Attendance Checker (complete by Day 1)

- Introduce the problem of traditional attendance taking in the classroom and how it can be time-consuming and distracting from instruction.
- Introduce the solution of an automatic attendance checker and explain the benefits of using it.
- Discuss the materials needed for the project, draw the block diagram, explain to them how the system works.
- Assign team tasks, distribute materials, and plan the schedule.
- Record video clips for important steps.

Part 2: Programming the ESP32 Microcontroller (complete by Jun. ??)

- Introduce the ESP32 Microcontroller and its capabilities.
- What issues one will run into when programming. ie syntax errors...
- introduce some problems in programming and have students figure out what the solution is
- Review the basics of programming with Arduino and ESP32.
- Install the MFRC522 library and show the connection between ESP32 and MFRC522 module.
- Demonstrate how to program the ESP32 to read RFID tags with the MFRC522 module and output the results to the serial monitor.
- Allow team time to program their microcontrollers and test them with the RFID module.
- Record video clips for important steps.

Part 3: Adding a Servo Motor (complete by Jun. ??)

- Introduce the Servo Motor and how it can be used to control the opening and closing of a door.
- Install the ESP32Servo library.
- Demonstrate how to connect and control a Servo Motor with the ESP32 Microcontroller.
- Review what problems one can run into when connecting wires and motors into the system
- Allow teams time to add a Servo Motor to their project and test it.
- Record video clips for important steps.

Part 4: Adding LEDs and Blynk Integration (complete by Jun. ??)

- Introduce the use of LEDs to indicate the status of the attendance checker.
- Demonstrate how to connect and control LEDs with the ESP32 Microcontroller.
- Mention to students the problem one may run into due to polarity of leds
 - Reminder for LED's polarity
- Install the Blynk library and how it can be used to display the attendance status on a mobile app.
- Allow teams time to integrate LEDs and Blynk into their project and test it.
- Record video clips for important steps.
- (Optional for Restroom Break) Add timer for when student is on restroom break

Part 5: Finalizing and Testing the Project (complete by Jun. ??)

- Design the testing plan based on the project objectives and requirements.
- Discuss the troubles that students may encounter and how to troubleshoot.
- Allow teams time to finalize their project and test it according to the testing plan provided.
- Have teams present their projects and demonstrate their functionality.
- Record video clips for important steps.

• Prepare the project presentation and make the video demo.

Reflection

Have students reflect on their experience with the project and what they have learned about rogramming, robotics, and Arduino.

- Discuss how STEM skills and knowledge can be applied to real-world problems and applications.
- Allow time for students to provide feedback on the project and suggest improvements for future iterations.

Sample Code

Sample Code